This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

STRUCTURES OF PYRIDINE CARBOXYLATE COMPLEXES OF COBALT(II) AND COPPER(II)

Kenji Waizump^a; Masato Takuno^a; Nobuhiro Fukushima^b; Hideki Masuda^c

^a Department of Chemistry, Faculty of Education, Yamaguchi University, Yoshida, Yamaguchi, Japan ^b Cray Research Japan Ltd., Chiyoda-ku, Tokyo, Japan ^c Department of Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan

To cite this Article Waizump, Kenji , Takuno, Masato , Fukushima, Nobuhiro and Masuda, Hideki(1998) 'STRUCTURES OF PYRIDINE CARBOXYLATE COMPLEXES OF COBALT(II) AND COPPER(II)', Journal of Coordination Chemistry, 44: 3, 269 – 279

To link to this Article: DOI: 10.1080/00958979808023079 URL: http://dx.doi.org/10.1080/00958979808023079

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

STRUCTURES OF PYRIDINE CARBOXYLATE COMPLEXES OF COBALT(II) AND COPPER(II)

KENJI WAIZUMI^{a,*}, MASATO TAKUNO^a, NOBUHIRO FUKUSHIMA^b and HIDEKI MASUDA^c

^a Department of Chemistry, Faculty of Education, Yamaguchi University, Yoshida, Yamaguchi 753, Japan; ^b Cray Research Japan Ltd., 13-3 Ichiban-cho, Chiyoda-ku, Tokyo 102, Japan; ^c Department of Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466, Japan

(Received 7 January 1997; In final form 14 April 1997)

The syntheses and crystal structures of $[Co(nic)_2(H_2O)_4]$ (1), $[Co(iso)_2(H_2O)_4]$ (2), $[Cu(nic)_2(H_2O)_4]$ (3), and $[Cu(iso)_2(H_2O)_4]$ (4) (nic = nicotinate; iso = isonicotinate) are reported. Complex 1 crystallizes in monoclinic, space group C2/m with cell parameters a = 14.150(4), b = 6.883(2), c = 8.497(2) Å, $\beta = 118.28(2)^{\circ}$ and Z = 2. The other crystals, **2**, **3**, and **4**, are all triclinic, P1; a = 9.777(3), b = 6.348(4), c = 6.888(3) Å, $\alpha = 113.10(6)$, $\beta = 110.55(3)$, $\gamma = 97.61(5)^{\circ}$, and Z = 1 for **2**; a = 7.0281(4), b = 7.7176(6), c = 8.6978(7) Å, $\alpha = 68.831(3)$, c = 6.8871(3) Å, $\alpha = 108.213(4)$, $\beta = 99.433(4)$, $\gamma = 105.190(4)^{\circ}$, and Z = 1 for **4**. The arrangements around the metal ions are *trans*-octahedra with two pyridyl nitrogens and two aqua oxygens in the equatorial positions and two aqua oxygens in the equatorial positions.

Keywords: X-ray structures; cobalt(II); copper(II); nicotinate; isonicotinate

INTRODUCTION

Pyridine monocarboxylic acids have three isomers according to the position of carboxylic acid on the pyridine ring, *i.e.*, picolinic acid (pyridine-2-carboxylic acid (pic)), nicotinic acid (pyridine-3-carboxylic acid (nic)), and isonicotinic acid (pyridine-4-carboxylic acid (iso)). Previously, X-ray diffraction studies of crystals of the zinc(II) complexes containing them

Downloaded At: 15:19 23 January 2011

^{*} Corresponding author.

have been carried out with respect to the following three isomers $[Zn(II)(pic)_2(H_2O)_2] \cdot 2H_2O_2^{1,2} [Zn(II)(nic)_2(H_2O)_4]^{3-6}$ and $[Zn(II)(iso)_2-1]^{3-6} [Zn(II)(iso)_2-1]^{3-6} [Zn(II)(iso)_2-1]^{3-6}$ $(H_2O)_4$,⁷ in which the crystals of the three isometric complexes have different space groups, *i.e.* $P2_1/c$, C2/m and $P\overline{1}$ for the picolinato, nicotinato and isonicotinato complexes, respectively. In the picolinato complex, the zinc(II) ion forms a distorted octahedron coordinated by the two pyridine nitrogens of two picolinate molecules, two carboxyl oxygens of two picolinate molecules, and two coordinated water oxygens. On the other hand, the zinc(II) ions in the nicotinato and isonicotinato complexes are surrounded by the four aqueous oxygen atoms and two pyridine nitrogen atoms, which are in a slightly distorted octahedral arrangement. Crystals of $[Co(II)(pic)_2(H_2O)_2] \cdot 2H_2O^8$ and $[Co(II)(nic)_2(H_2O)_4]^9$ have also been examined previously and their structures are the same as the respective zinc(II) isomers. The detailed crystal structure of $[Co(II)(iso)_2(H_2O)_4]$, however, has not been clarified, although the structure has been reported to be the same as the zinc(II) one from powder X-ray diffraction measurements.¹⁰ In the case of the copper(II) complexes, the crystal structure of the picolinato complex has been investigated.¹¹ The complex crystallizes in space group $P\bar{1}$ with a composition of $[Cu(II)(pic)_2] \cdot 2H_2O$, which is different from those of the corresponding zinc(II) and cobalt(II) complexes. Coordination around the copper(II) ion gives an axially elongated octahedron with the two nitrogen and two oxygen atoms of two picolinate ligands at equatorial positions and two carboxyl oxygens belonging to adjacent layers at axial positions. Therefore, the structures and compositions of the nicotinato and isonicotinato complexes of copper(II), which have never been investigated, may also differ from those of the zinc(II) and cobalt(II) complexes.

In this paper the crystal structures of $[Co(II)(nic)_2(H_2O)_4]$ (1), $[Co(II)(iso)_2(H_2O)_4]$ (2), $[Cu(II)(nic)_2(H_2O)_4]$ (3), and $[Cu(II)(iso)_2(H_2O)_4]$ (4) are reported in order to give an answer to the above problem. Although the crystal structure of 1 has previously been reported by Anagnostopoulos *et al.*,⁹ positional and thermal parameters have not been given. Here, we redetermined its structure.

EXPERIMENTAL

Preparation

The pyridine carboxylic acids were all commercially available and were used without further purification. Each ligand (0.62 g, 5.0 mmol) was dissolved in 20 cm^3 of distilled water by addition of NaOH at 60°C (final pH *ca* 6), and then the metal(II) chloride (0.59 g or 0.43 g for CoCl₂·6H₂O or

 $CuCl_2 \cdot 2H_2O$, 2.5 mmol) was added to the solution. After stirring the solutions for two hours, they were cooled to room temperature. The powdery products were filtered off, and then dissolved in distilled water again. Crystals suitable for X-ray examination were obtained from aqueous solution by slow evaporation during several days. The cobalt(II) complexes, 1 and 2, were obtained as salmon pink, plate-like crystals, and the copper(II) species, 3 and 4, give blue, plate-like crystals.

Elemental analyses (C, H, N) were performed using a LECO CHN-900 elemental analyzer. *Anal.*: Calcd. for $C_{14}H_{11}N_2Co$ (%): C, 38.41; H, 4.27; N, 7.47. Found for 1: C, 38.35; H, 4.32; N, 7.41. Found for 2: C, 38.16; H, 4.40; N, 7.40. Calcd. for $C_{14}H_{11}N_2Cu$ (%): C, 37.93; H, 4.21; N, 7.38. Found for 3: C, 38.89; H, 4.25; N, 7.34. Found for 4: C, 37.93; H, 4.25; N, 7.33.

X-ray Structure Determination

Crystal data and experimental details are listed in Table I. Diffraction data were collected with an Enraf-Nonius CAD4 four-circle diffractometer using graphite monochromated MoK α radiation. The intensities were monitored by three standard reflections every 2 hours. There was no significant variation in intensities during the data collections. The intensities were converted to F_o data in the usual manner. All the reflections were corrected for Lorentz and polarization effects. An empirical absorption correction using DIFABS¹² was applied after isotropic refinement for non-hydrogen atoms.

The structures were solved by the heavy atom method and refined by fullmatrix least-squares methods. Several cycles of refinement including anisotropic thermal parameters for non-hydrogen atoms were carried out. All H atoms were located from difference Fourier maps and were refined isotropically. Scattering factors and anomalous dispersion terms for nonhydrogen atoms were taken from *International Tables for X-ray Crystallography*.¹³ Calculations were performed on an INDY workstation computer using the SDP-Mol EN program¹⁴ and partially on a CRAY C90 supercomputer at the Supercomputer Laboratory of the Institute for Chemical Research of Kyoto University. Final atomic parameters are summarized in Table II.

RESULTS AND DISCUSSION

The molecular structures of complexes 1, 2, 3, and 4 are shown in Figure 1(a), (b), (c), and (d), respectively. Each crystal consists of a discrete *trans*- $[M(II)L_2(H_2O)_4]$ molecule (M(II) = Co(II) or Cu(II); L = nic or iso) in the

	TABLE I Crystal data and	experimental conditions for 1	., 2, 3, and 4	
	Complex 1	Complex 2	Complex 3	Complex 4
Formula	C ₁₂ H ₁₆ N ₂ O ₈ Co	C ₁₂ H ₁₆ N ₂ O ₈ Co	C ₁₂ H ₁₆ N ₂ O ₈ Cu	C ₁₂ H ₁₆ N ₂ O ₈ Cu
Formula weight	375.20	375.20	379.82	379.82
Crystal system	Monoclinic	Triclinic	Triclinic	Triclinic
Space group	C2/m	<u>PI</u>	PI	$P\bar{I}$
a/Å	14.150(4)	9.777(3)	7.0281(4)	9.1807(4)
$b/\dot{\mathbf{A}}$	6.883(2)	6.348(4)	7.1760(6)	6.3334(3)
c/Å	8.497(2)	6.888(3)	8.6978(7)	6.8871(3)
$\alpha/^{\circ}$		113.10(6)	68.103(7)	108.213(4)
0%	118.28(2)	110.55(3)	68.526(5)	99.433(4)
21,0		97.61(5)	62.550(6)	105.190(4)
$V/\dot{\mathbf{A}}^3$	728(8)	349(2)	351(1)	353.7(1)
Z	5	-	I	1
$D_{\rm calc}/{ m gcm}^3$	1.712	1.785	1.797	1.783
Crystal size/mm	$0.3 \times 0.15 \times 0.05$	0.2 imes 0.2 imes 0.05	$0.5 \times 0.5 \times 0.25$	$0.3 \times 0.5 \times 0.1$
T/K	298	298	298	298
F(000)	386	193	195	195
$\mu(MoK\alpha)/cm^{-1}$	12.2	12.7	16.0	15.9
Radiation (MoK α)	0.71069	0.71069	0.71069	0.71069
Unit cell determination	25 reflections	25 reflections	25 reflections	25 reflections
	$19.44 \leq 2\theta \leq 31.72$	$19.72 \leq 2\theta \leq 28.18$	$23.60 \leq 2 \leq 28.62$	$21.64 \leq 2\theta \leq 32.82$
Scan mode	$\omega - 2\theta$	$\omega - 2\theta$	$\omega - 2\theta$	ω -2 θ
Maximum 20/°	60	60	60	60
hkl range	$+19, +9, \pm 11$	$+13, \pm 8, \pm 9$	$+9, \pm 10, \pm 12$	$+11, \pm 7, \pm 8$
Scanning rate/° min ⁻¹	6.0	6.0	6.0	6.0
Scan width/°	$0.70 \pm 0.35 \tan \theta$	$1.15 \pm 0.35 \tan \theta$	0.60 + 0.35 an heta	$0.85 \pm 0.59 an heta$
No. of total reflections measured	1224	2032	2164	1528
No. of reflections used $(I_o > 3\sigma I_o)$	948	1706	1974	1358
Parameters refined	88	138	138	138
R	0.035	0.054	0.025	0.035
Rw	0.049	0.068	0.041	0.052
Weighting schemes	$1/(\sigma(F_{ m o}))^2$	$1/(\sigma(F_{ m o}))^2$	$1/(\sigma(F_o))^2$	$1/(\sigma(F_o))^2$

272

K. WAIZUMI et al.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Atom	x/a	y/b	z/c	B_{eq} or B_{iso} (Å ²)
$\begin{array}{cccc} Co & 0 & 0 & 0 & 0 & 0 \\ 0(1) & 0.0590(1) & 0.2176(3) & -0.1062(2) & 2.33(3) \\ 0(2) & 0.3161(2) & 0 & 0.7185(3) & 3.31(6) \\ N & 0.1476(2) & 0 & 0.2502(4) & 2.13(6) \\ C(1) & 0.2439(2) & 0 & 0.2502(4) & 2.13(6) \\ C(2) & 0.3405(2) & 0 & 0.4097(5) & 2.33(7) \\ C(3) & 0.3391(2) & 0 & 0.4697(4) & 2.31(7) \\ C(4) & 0.1473(2) & 0 & 0.4040(4) & 1.79(6) \\ C(5) & 0.2400(2) & 0 & 0.5697(4) & 2.12(7) \\ C(4) & 0.1473(2) & 0 & 0.4040(4) & 1.79(6) \\ C(5) & 0.2400(2) & 0 & 0.5697(4) & 2.12(7) \\ H(1) & 0.242(3) & 0 & 0.134(6) & 4(1) \\ H(2) & 0.404(3) & 0 & 0.7373(4) & 2.12(7) \\ H(1) & 0.242(3) & 0 & 0.0569(6) & 4(1) \\ H(3) & 0.403(3) & 0 & 0.678(6) & 4(1) \\ H(4) & 0.082(3) & 0 & 0.405(6) & 4(1) \\ H(5) & 0.097(2) & 0.328(5) & -0.041(4) & 4.0(7) \\ Complex 2 \\ \hline Complex 2 \\ \hline Complex 1 \\ Complex 3 \\ C(1) & -0.0428(3) & -0.2117(4) & 0.1518(4) & 1.89(5) \\ O(2) & 0.0818(3) & -0.2077(4) & 0.3122(4) & 2.51(6) \\ O(3) & 0.7333(3) & -0.1927(4) & 0.3122(4) & 2.51(6) \\ O(4) & 0.3016(4) & 0.2077(6) & 0.957(6) & 1.95(7) \\ C(1) & 0.2692(4) & -0.2178(6) & 0.0936(4) & 1.71(6) \\ C(1) & 0.2692(4) & -0.2178(6) & 0.0597(6) & 1.95(7) \\ C(2) & 0.4184(3) & -0.2196(5) & 0.1428(5) & 1.666(6) \\ C(3) & 0.5010(4) & 0.2059(6) & 0.2956(5) & 1.79(6) \\ C(5) & 0.5387(3) & -0.0043(5) & 0.2662(4) & 1.34(6) \\ C(6) & 0.7033(4) & 0.0033(6) & 0.214(7) & 3(1) \\ H(4) & 0.320(5) & 0.357(7) & 0.372(7) & 3(1) \\ H(3) & 0.580(5) & 0.357(7) & 0.372(7) & 3(1) \\ H(4) & 0.320(5) & 0.357(7) & 0.372(7) & 3(1) \\ H(4) & 0.200(5) & 0.334(8) & 0.214(7) & 3(1) \\ H(4) & 0.200(5) & 0.334(8) & 0.214(7) & 3(1) \\ H(4) & 0.200(5) & 0.357(7) & 0.372(7) & 3(1) \\ H(4) & 0.200(5) & 0.357(7) & 0.372(7) & 3(1) \\ H(4) & 0.200(5) & 0.357(7) & 0.372(7) & 3(1) \\ H(3) & 0.580(5) & 0.357(7) & 0.372(7) & 3(1) \\ H(4) & 0.260(5) & 0.357(6) & -0.0874(2) & 2.26(6) \\ O(3) & -0.156(2) & -0.256(2) & 0.235(6) & 1.77(3) \\ O(1) & 0.268(2) & -0.254(2) & 0.657(2) & 1.63(2) \\ C(7) & 0.124(5) & 0.257(8) & 0.452(8) & 4(1) \\ H(8) & 0.116(6) & 0.447(9) & 0.377(8) & 5(1) \\ Complex 3 \\ Cu & 0 & 0 & 0 & 0 & 0 \\ Co & $	Complex 1				
$\begin{array}{cccc} 0.1 & 0.0590(1) & 0.2176(3) & -0.1052(2) & 2.33(3) \\ 0(2) & 0.3161(2) & 0 & 0.884(3) & 2.98(6) \\ 0(3) & 0.1372(2) & 0 & 0.7185(3) & 3.31(6) \\ N & 0.1476(2) & 0 & 0.2502(4) & 2.13(6) \\ C(1) & 0.2439(2) & 0 & 0.4079(5) & 2.53(7) \\ C(3) & 0.3391(2) & 0 & 0.4040(4) & 1.79(6) \\ C(5) & 0.2400(2) & 0 & 0.5679(4) & 1.75(6) \\ C(6) & 0.2311(3) & 0 & 0.1373(4) & 2.12(7) \\ H(1) & 0.242(3) & 0 & 0.134(6) & 4(1) \\ H(2) & 0.404(3) & 0 & 0.399(6) & 4(1) \\ H(3) & 0.403(3) & 0 & 0.678(6) & 4(1) \\ H(4) & 0.082(3) & 0 & 0.405(6) & 4(1) \\ H(5) & 0.097(2) & 0.328(5) & -0.041(4) & 4.0(7) \\ Complex 2 & & & & \\ Co & 0 & 0 & 0 & 0 & 1.34(1) \\ O(1) & -0.0428(3) & -0.2177(4) & 0.1518(4) & 1.89(5) \\ O(2) & 0.0818(3) & 0.336(4) & 0.3385(4) & 2.47(6) \\ O(3) & 0.7333(3) & -0.1927(4) & 0.3122(4) & 2.51(6) \\ O(4) & 0.8014(3) & 0.2077(4) & 0.5150(5) & 2.68(6) \\ O(4) & 0.8014(3) & 0.2077(4) & 0.5150(5) & 2.68(6) \\ O(4) & 0.333(4) & -0.217(4) & 0.5150(5) & 2.68(6) \\ O(4) & 0.333(3) & -0.1927(4) & 0.3122(4) & 2.51(6) \\ O(4) & 0.333(3) & -0.1927(4) & 0.3122(4) & 2.51(6) \\ O(4) & 0.333(3) & -0.1927(4) & 0.3122(4) & 2.51(6) \\ O(4) & 0.338(4) & 0.2077(4) & 0.5150(5) & 2.68(6) \\ C(3) & 0.5010(4) & 0.2059(6) & 0.2956(5) & 1.79(6) \\ C(4) & 0.348(4) & 0.193(5) & 0.2662(4) & 1.34(6) \\ C(5) & 0.3387(3) & -0.043(5) & 0.2662(4) & 1.34(6) \\ C(4) & 0.348(4) & 0.193(5) & 0.2662(4) & 1.34(6) \\ C(5) & 0.3387(3) & -0.043(5) & 0.2662(4) & 1.34(6) \\ C(4) & 0.348(4) & 0.193(5) & 0.2662(4) & 1.34(6) \\ C(5) & 0.3387(3) & -0.043(5) & 0.2662(4) & 1.34(6) \\ C(4) & 0.348(4) & 0.193(5) & 0.2662(4) & 1.34(6) \\ C(5) & 0.3387(3) & -0.043(5) & 0.2662(4) & 1.34(6) \\ C(4) & 0.348(4) & 0.193(5) & 0.2662(4) & 1.34(6) \\ C(5) & 0.3387(3) & -0.043(5) & 0.2662(4) & 1.34(6) \\ C(4) & 0.348(4) & 0.193(5) & 0.2662(4) & 1.34(6) \\ C(4) & 0.348(4) & 0.193(5) & 0.2662(4) & 1.34(6) \\ C(5) & 0.337(3) & -0.296(9) & 0.237(7) & 3(1) \\ H(4) & 0.320(5) & 0.357(7) & 0.371(7) & 3(1) \\ H(4) & 0.320(5) & 0.357(7) & 0.371(7) & 3(1) \\ H(4) & 0.200(2) & -0.254(2) & -0.058(2) & 1.77(2) \\ C(4) & -0.49$	Co	0	0	0	1.54(1)
$\begin{array}{cccccc} Q(2) & 0.3161(2) & 0 & 0.8848(3) & 2.98(6) \\ Q(3) & 0.1372(2) & 0 & 0.7185(3) & 3.31(6) \\ N & 0.1476(2) & 0 & 0.2468(3) & 1.78(5) \\ C(1) & 0.2439(2) & 0 & 0.2502(4) & 2.13(6) \\ C(2) & 0.3405(2) & 0 & 0.4079(5) & 2.53(7) \\ C(3) & 0.3391(2) & 0 & 0.5697(4) & 2.31(7) \\ C(4) & 0.1473(2) & 0 & 0.4040(4) & 1.79(6) \\ C(5) & 0.2400(2) & 0 & 0.5679(4) & 1.75(6) \\ C(6) & 0.2311(3) & 0 & 0.7373(4) & 2.12(7) \\ H(1) & 0.242(3) & 0 & 0.134(6) & 4(1) \\ H(2) & 0.404(3) & 0 & 0.399(6) & 4(1) \\ H(3) & 0.403(3) & 0 & 0.678(6) & 4(1) \\ H(4) & 0.082(3) & 0 & 0.405(6) & 4(1) \\ H(5) & 0.097(2) & 0.328(5) & -0.041(4) & 4.0(7) \\ Complex 2 \\ Co & 0 & 0 & 0 & 0 \\ Q(4) & 0.0313(4) & 0.3385(4) & 2.47(6) \\ Q(3) & 0.7333(3) & -0.227(4) & 0.518(4) & 1.89(5) \\ Q(4) & 0.0818(3) & -0.3036(4) & 0.3385(4) & 2.47(6) \\ Q(3) & 0.7333(3) & -0.217(4) & 0.1518(4) & 1.89(5) \\ Q(4) & 0.2316(3) & -0.0140(5) & 0.0936(4) & 1.71(6) \\ C(5) & 0.5387(3) & -0.027(4) & 0.5150(5) & 2.68(6) \\ N & 0.2316(3) & -0.0140(5) & 0.0936(4) & 1.71(6) \\ C(3) & 0.05010(4) & 0.2077(4) & 0.5150(5) & 1.68(6) \\ C(3) & 0.05010(4) & 0.2095(6) & 0.2956(5) & 1.79(6) \\ C(4) & 0.3484(4) & -0.2196(5) & 0.1428(5) & 1.66(6) \\ C(3) & 0.5010(4) & 0.0295(6) & 0.2956(5) & 1.79(6) \\ C(4) & 0.334(8) & 0.043(6) & 0.3714(5) & 1.88(6) \\ H(1) & 0.181(5) & -0.362(8) & -0.022(7) & 3(1) \\ H(4) & 0.320(5) & 0.337(7) & 0.372(7) & 3(1) \\ H(4) & 0.320(5) & 0.337(8) & 0.2077(8) & 5(1) \\ Complex 3 \\ Cu & 0 & 0 & 0 & 0 & 1.479(4) \\ O(1) & 0.2615(2) & -0.252(2) & -0.0720(2) & 2.68(3) \\ O(2) & 0.016(2) & 0.237(62) & -0.0874(2) & 2.36(2) \\ O(3) & -0.176(0) & -0.236(6) & 0.235(61) & 1.77(3) \\ O(4) & 0.0601(2) & -0.226(2) & 0.2331(1) & 1.52(2) \\ C(4) & -0.0499(2) & -0.248(2) & 0.5516(2) & 1.77(3) \\ N & 0.0601(2) & -0.226(2) & -0.0720(2) & 2.68(3) \\ O(1) & 0.2608(2) & -0.1641(2) & 0.250(2) & 1.83(3) \\ C(1) & 0.2608(2) & -0.1641(2) & 0.250(2) & 1.83(3) \\ C(1) & 0.2608(2) & -0.1641(2) & 0.250(2) & 1.83(3) \\ C(1) & 0.2608(2) & -0.1641(2) & 0.250(2) & 1.83(3) \\ C(1) & 0.2608(2) & -0.1641(2) & 0.250(2) & 1.83$	O(1)	0.0590(1)	0.2176(3)	-0.1062(2)	2.33(3)
$\begin{array}{ccccc} 0.03 & 0.1372(2) & 0 & 0.7185(3) & 3.31(6) \\ N & 0.1476(2) & 0 & 0.2468(3) & 1.78(5) \\ C(1) & 0.2439(2) & 0 & 0.5697(4) & 2.31(7) \\ C(2) & 0.3405(2) & 0 & 0.4079(5) & 2.53(7) \\ C(3) & 0.3391(2) & 0 & 0.5697(4) & 1.75(6) \\ C(5) & 0.2400(2) & 0 & 0.5697(4) & 1.75(6) \\ C(6) & 0.2311(3) & 0 & 0.7373(4) & 2.12(7) \\ H(1) & 0.242(3) & 0 & 0.134(6) & 4(1) \\ H(3) & 0.403(3) & 0 & 0.678(6) & 4(1) \\ H(4) & 0.082(3) & 0 & 0.0405(6) & 4(1) \\ H(4) & 0.082(3) & 0 & 0.0405(6) & 4(1) \\ H(5) & 0.097(2) & 0.328(5) & -0.041(4) & 4.0(7) \\ Complex 2 & & & & \\ Co & 0 & 0 & 0 & 0 & 1.34(1) \\ O(1) & -0.0428(3) & -0.2117(4) & 0.1518(4) & 1.89(5) \\ O(2) & 0.0818(3) & 0.0366(4) & 0.3385(4) & 2.47(6) \\ O(3) & 0.733(3) & -0.1927(4) & 0.3122(4) & 2.51(6) \\ O(4) & 0.8014(3) & 0.2077(4) & 0.5150(5) & 2.68(6) \\ N & 0.2316(3) & -0.040(5) & 0.0936(4) & 1.71(6) \\ C(1) & 0.2692(4) & -0.2178(6) & 0.0597(6) & 1.95(7) \\ C(2) & 0.4184(3) & -0.2196(5) & 0.1428(5) & 1.666(6) \\ O(3) & 0.733(4) & -0.02196(5) & 0.1428(5) & 1.666(6) \\ C(4) & 0.3488(4) & 0.1935(5) & 0.2051(5) & 1.73(5) \\ C(5) & 0.5387(3) & -0.0043(5) & 0.2662(4) & 1.34(6) \\ C(6) & 0.703(3) & -0.360(7) & 0.115(7) & 3(1) \\ H(2) & 0.437(5) & -0.360(7) & 0.115(7) & 3(1) \\ H(4) & 0.320(5) & 0.334(8) & 0.214(7) & 3(1) \\ H(4) & 0.320(5) & 0.334(8) & 0.214(7) & 3(1) \\ H(4) & 0.320(5) & 0.334(8) & 0.214(7) & 3(1) \\ H(4) & 0.320(5) & 0.334(8) & 0.214(7) & 3(1) \\ H(4) & 0.320(5) & 0.334(8) & 0.214(7) & 3(1) \\ H(4) & 0.320(5) & 0.334(8) & 0.218(8) & 5(1) \\ Complex 3 & & & & & & & & & & & & & & & & & & $	O(2)	0.3161(2)	0	0.8848(3)	2.98(6)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O(3)	0.1372(2)	0	0.7185(3)	3.31(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N	0.1476(2)	0	0.2468(3)	1.78(5)
$\begin{array}{ccccc} C(2) & 0.3405(2) & 0 & 0.4079(5) & 2.53(7) \\ C(3) & 0.3391(2) & 0 & 0.5679(4) & 2.31(7) \\ C(4) & 0.1473(2) & 0 & 0.4040(4) & 1.79(6) \\ C(5) & 0.2400(2) & 0 & 0.5679(4) & 1.75(6) \\ C(6) & 0.2311(3) & 0 & 0.7373(4) & 2.12(7) \\ H(1) & 0.242(3) & 0 & 0.134(6) & 4(1) \\ H(2) & 0.404(3) & 0 & 0.399(6) & 4(1) \\ H(3) & 0.403(3) & 0 & 0.678(6) & 4(1) \\ H(4) & 0.082(3) & 0 & 0.405(6) & 4(1) \\ H(5) & 0.097(2) & 0.328(5) & -0.041(4) & 4.0(7) \\ H(6) & 0.090(2) & 0.172(6) & -0.163(4) & 4.0(7) \\ Complex 2 & & & & & \\ Co & 0 & 0 & 0 & 0 & 1.34(1) \\ O(1) & -0.0428(3) & -0.2117(4) & 0.1518(4) & 1.89(5) \\ O(2) & 0.0818(3) & 0.3036(4) & 0.3385(4) & 2.47(6) \\ O(3) & 0.7333(3) & -0.1927(4) & 0.3122(4) & 2.51(6) \\ O(4) & 0.8014(3) & 0.2077(4) & 0.5150(5) & 2.68(6) \\ N & 0.2316(3) & -0.0140(5) & 0.0936(4) & 1.71(6) \\ C(1) & 0.2692(4) & -0.2178(6) & 0.0597(6) & 1.95(7) \\ C(2) & 0.4184(3) & -0.195(5) & 0.265(5) & 1.79(6) \\ C(3) & 0.5010(4) & 0.2059(6) & 0.2956(5) & 1.79(6) \\ C(4) & 0.3488(4) & 0.1935(5) & 0.2051(5) & 1.73(5) \\ C(5) & 0.5387(3) & -0.0043(5) & 0.2662(4) & 1.34(6) \\ C(6) & 0.7033(4) & 0.0043(6) & 0.3714(5) & 1.88(6) \\ H(1) & 0.181(5) & -0.362(8) & -0.022(7) & 3(1) \\ H(2) & 0.437(5) & -0.360(7) & 0.115(7) & 3(1) \\ H(3) & 0.580(5) & 0.357(7) & 0.372(7) & 3(1) \\ H(4) & 0.320(5) & 0.334(8) & 0.214(7) & 3(1) \\ H(3) & 0.580(5) & 0.357(7) & 0.372(7) & 3(1) \\ H(4) & 0.320(5) & 0.337(2) & -0.0720(2) & 2.68(3) \\ O(2) & 0.2016(2) & -0.252(2) & -0.0720(2) & 2.68(3) \\ O(1) & 0.2615(2) & -0.252(2) & -0.0720(2) & 2.68(3) \\ O(2) & 0.2016(2) & -0.252(2) & -0.0720(2) & 2.68(3) \\ O(1) & 0.2615(2) & -0.252(2) & -0.0720(2) & 2.68(3) \\ O(2) & 0.2016(2) & -0.252(2) & -0.0720(2) & 2.68(3) \\ O(1) & 0.2615(2) & -0.252(2) & -0.0720(2) & 2.68(3) \\ O(2) & 0.2016(2) & -0.252(2) & -0.0720(2) & 2.68(3) \\ O(1) & 0.2605(2) & -0.252(2) & -0.0720(2) & 2.68(3) \\ O(1) & 0.2605(2) & -0.252(2) & -0.0720(2) & 2.68(3) \\ O(2) & 0.216(2) & -0.2544(2) & 0.3373(2) & 1.49(2) \\ O(4) & -0.4118(2) & -0.2472(2) & 0.662(1) & 2.77(3) \\ N & 0.0601(2) & -0.2268(2) & $	C(1)	0.2439(2)	0	0.2502(4)	2.13(6)
$\begin{array}{cccc} C(3) & 0.3391(2) & 0 & 0.5697(4) & 2.31(7) \\ C(4) & 0.1473(2) & 0 & 0.4040(4) & 1.79(6) \\ C(5) & 0.2400(2) & 0 & 0.5679(4) & 1.75(6) \\ C(6) & 0.2311(3) & 0 & 0.7373(4) & 2.12(7) \\ H(1) & 0.242(3) & 0 & 0.134(6) & 4(1) \\ H(2) & 0.404(3) & 0 & 0.399(6) & 4(1) \\ H(3) & 0.403(3) & 0 & 0.678(6) & 4(1) \\ H(4) & 0.082(3) & 0 & 0.405(6) & 4(1) \\ H(5) & 0.097(2) & 0.328(5) & -0.041(4) & 4.0(7) \\ H(6) & 0.090(2) & 0.172(6) & -0.163(4) & 4.0(7) \\ Complex 2 & & & & \\ Co & 0 & 0 & 0 & 1.34(1) \\ O(1) & -0.0428(3) & -0.2117(4) & 0.1518(4) & 1.89(5) \\ O(2) & 0.0818(3) & 0.305(4) & 0.3385(4) & 2.47(6) \\ O(3) & 0.7333(3) & -0.1927(4) & 0.3122(4) & 2.51(6) \\ O(4) & 0.8014(3) & 0.2077(4) & 0.5150(5) & 2.68(6) \\ N & 0.2316(3) & -0.0140(5) & 0.0936(4) & 1.71(6) \\ C(1) & 0.2692(4) & -0.2178(6) & 0.0597(6) & 1.95(7) \\ C(2) & 0.4184(3) & -0.2196(5) & 0.1428(5) & 1.666(6) \\ C(3) & 0.5010(4) & 0.2059(6) & 0.2956(5) & 1.79(6) \\ C(4) & 0.3488(4) & 0.1935(5) & 0.2051(5) & 1.73(5) \\ C(5) & 0.5387(3) & -0.0043(5) & 0.262(2) & 1.34(6) \\ C(6) & 0.7033(4) & 0.0043(6) & 0.3714(5) & 1.88(6) \\ H(1) & 0.181(5) & -0.362(8) & -0.022(7) & 3(1) \\ H(3) & 0.580(5) & 0.357(7) & 0.372(7) & 3(1) \\ H(4) & 0.320(5) & 0.335(7) & 0.377(7) & 3(1) \\ H(3) & 0.180(5) & 0.357(7) & 0.372(7) & 3(1) \\ H(4) & 0.320(5) & 0.337(7) & 0.372(7) & 3(1) \\ H(4) & 0.320(5) & 0.337(7) & 0.372(7) & 3(1) \\ H(4) & 0.320(5) & 0.357(7) & 0.372(7) & 3(1) \\ H(4) & 0.320(5) & 0.357(7) & 0.372(7) & 3(1) \\ H(4) & 0.320(5) & 0.337(8) & 0.214(7) & 3(1) \\ H(4) & 0.320(5) & 0.357(7) & 0.372(7) & 3(1) \\ H(4) & 0.320(5) & 0.337(6) & -0.028(8) & 5(1) \\ Complex 3 \\ Cu & 0 & 0 & 0 & 0 & 0 \\ C(4) & -0.418(2) & -0.247(2) & 0.6622(1) & 2.77(3) \\ N & 0.0601(2) & -0.254(2) & -0.0720(2) & 2.68(3) \\ O(3) & -0.1750(2) & -0.248(2) & 0.5516(2) & 1.77(3) \\ C(4) & -0.0499(2) & -0.2544(2) & 0.535(2) & 1.42(2) \\ C(5) & -0.2268(2) & -0.0304(2) & 0.6876(2) & 1.63(2) \\ H(1) & 0.369(3) & -0.134(3) & 0.146(3) & 2.1(4) \\ \end{array} \right)$	C(2)	0.3405(2)	0	0.4079(5)	2.53(7)
$\begin{array}{ccccc} C(4) & 0.1473(2) & 0 & 0.4040(4) & 1.79(6) \\ C(5) & 0.2400(2) & 0 & 0.5679(4) & 1.75(6) \\ C(6) & 0.2311(3) & 0 & 0.7373(4) & 2.12(7) \\ H(1) & 0.242(3) & 0 & 0.134(6) & 4(1) \\ H(3) & 0.403(3) & 0 & 0.678(6) & 4(1) \\ H(4) & 0.082(3) & 0 & 0.405(6) & 4(1) \\ H(4) & 0.082(3) & 0 & 0.405(6) & 4(1) \\ H(5) & 0.097(2) & 0.328(5) & -0.041(4) & 4.0(7) \\ H(6) & 0.090(2) & 0.172(6) & -0.163(4) & 4.0(7) \\ \hline Complex 2 & & & & & & & & & & & & & & & & & & $	C(3)	0.3391(2)	0	0.5697(4)	2.31(7)
$\begin{array}{ccccc} C(5) & 0.2400(2) & 0 & 0.5679(4) & 1.75(6) \\ C(6) & 0.2311(3) & 0 & 0.7373(4) & 2.12(7) \\ H(1) & 0.242(3) & 0 & 0.134(6) & 4(1) \\ H(2) & 0.404(3) & 0 & 0.399(6) & 4(1) \\ H(3) & 0.403(3) & 0 & 0.678(6) & 4(1) \\ H(4) & 0.082(3) & 0 & 0.405(6) & 4(1) \\ H(5) & 0.097(2) & 0.328(5) & -0.041(4) & 4.0(7) \\ K(6) & 0.090(2) & 0.172(6) & -0.163(4) & 4.0(7) \\ \hline Complex 2 & & & & & & \\ Co & 0 & 0 & 0 & 0 & 1.34(1) \\ O(1) & -0.0428(3) & -0.2117(4) & 0.1518(4) & 1.89(5) \\ O(2) & 0.0818(3) & 0.3036(4) & 0.3385(4) & 2.47(6) \\ O(3) & 0.7333(3) & -0.1927(4) & 0.3122(4) & 2.51(6) \\ O(4) & 0.8014(3) & 0.2077(4) & 0.5130(5) & 2.68(6) \\ N & 0.2316(3) & -0.014(5) & 0.0936(4) & 1.71(6) \\ C(1) & 0.2692(4) & -0.2178(6) & 0.0597(6) & 1.95(7) \\ C(2) & 0.4184(3) & -0.2196(5) & 0.1428(5) & 1.66(6) \\ C(3) & 0.5010(4) & 0.2059(6) & 0.2956(5) & 1.79(6) \\ C(4) & 0.3488(4) & 0.1935(5) & 0.2051(5) & 1.73(5) \\ C(5) & 0.5387(3) & -0.043(5) & 0.2662(4) & 1.34(6) \\ C(6) & 0.7033(4) & 0.0043(5) & 0.2662(4) & 1.34(6) \\ H(1) & 0.181(5) & -0.362(8) & -0.022(7) & 3(1) \\ H(2) & 0.437(5) & -0.360(7) & 0.115(7) & 3(1) \\ H(4) & 0.320(5) & 0.334(8) & 0.214(7) & 3(1) \\ H(3) & 0.580(5) & 0.357(7) & 0.372(7) & 3(1) \\ H(4) & 0.320(5) & 0.334(8) & 0.214(7) & 3(1) \\ H(3) & 0.0580(5) & 0.337(4) & 0.248(8) & 5(1) \\ H(1) & 0.181(5) & -0.362(8) & -0.022(7) & 3(1) \\ H(4) & 0.320(5) & 0.334(8) & 0.214(7) & 3(1) \\ H(4) & 0.320(5) & 0.334(8) & 0.214(7) & 3(1) \\ H(4) & 0.320(5) & 0.334(8) & 0.214(7) & 3(1) \\ H(4) & 0.320(5) & 0.334(8) & 0.214(7) & 3(1) \\ H(3) & 0.0580(5) & 0.357(7) & 0.372(7) & 3(2) \\ O(1) & 0.2615(2) & -0.252(2) & -0.0720(2) & 2.68(3) \\ O(2) & 0.2016(2) & 0.2376(2) & -0.0874(2) & 2.36(2) \\ O(3) & -0.1750(2) & -0.472(2) & 0.6622(1) & 2.77(3) \\ N & 0.0601(2) & -0.126(2) & 0.2331(1) & 1.52(2) \\ C(1) & 0.2608(2) & -0.164(2) & 0.2331(1) & 1.52(2) \\ C(1) & 0.2608(2) & -0.154(2) & 0.3535(2) & 1.43(2) \\ C(3) & -0.1570(2) & -0.2472(2) & 0.6652(1) & 2.77(3) \\ N & 0.0601(2) & -0.1266(2) & 0.3737(2) & 1.49(2) \\ C(5) & -0.0499(2) & -0.2544(2) & 0.5356(2) & 1.6$	C(4)	0.1473(2)	0	0.4040(4)	1.79(6)
$\begin{array}{ccccc} C(6) & 0.2311(3) & 0 & 0.7373(4) & 2.12(7) \\ H(1) & 0.242(3) & 0 & 0.134(6) & 4(1) \\ H(2) & 0.404(3) & 0 & 0.399(6) & 4(1) \\ H(3) & 0.403(3) & 0 & 0.678(6) & 4(1) \\ H(4) & 0.082(3) & 0 & 0.405(6) & 4(1) \\ H(5) & 0.097(2) & 0.328(5) & -0.041(4) & 4.0(7) \\ H(6) & 0.090(2) & 0.172(6) & -0.163(4) & 4.0(7) \\ \hline \\ Complex 2 & & & & & & & & & & & & & & & & & & $	C(5)	0.2400(2)	0	0.5679(4)	1.75(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)	0.2311(3)	0	0.7373(4)	2.12(7)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(1)	0.242(3)	0	0.134(6)	4(1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(2)	0.404(3)	0	0.399(6)	4(1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(3)	0.403(3)	0	0.678(6)	4(1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(4)	0.082(3)	0	0.405(6)	4(1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(5)	0.097(2)	0.328(5)	-0.041(4)	4.0(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H(6)	0.090(2)	0.172(6)	-0.163(4)	4.0(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Complex 2				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Со	0	0	0	1.34(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(1)	-0.0428(3)	-0.2117(4)	0.1518(4)	1.89(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(2)	0.0818(3)	0.3036(4)	0.3385(4)	2.47(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(3)	0.7333(3)	-0.1927(4)	0.3122(4)	2.51(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(4)	0.8014(3)	0.2077(4)	0.5150(5)	2.68(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N	0.2316(3)	-0.0140(5)	0.0936(4)	1.71(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)	0.2692(4)	-0.2178(6)	0.0597(6)	1.95(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	0.4184(3)	-0.2196(5)	0.1428(5)	1.66(6)
$\begin{array}{ccccc} C(4) & 0.3488(4) & 0.1935(5) & 0.2051(5) & 1.73(5) \\ C(5) & 0.5387(3) & -0.0043(5) & 0.2662(4) & 1.34(6) \\ C(6) & 0.7033(4) & 0.0043(6) & 0.3714(5) & 1.88(6) \\ H(1) & 0.181(5) & -0.362(8) & -0.022(7) & 3(1) \\ H(2) & 0.437(5) & -0.360(7) & 0.115(7) & 3(1) \\ H(3) & 0.580(5) & 0.357(7) & 0.372(7) & 3(1) \\ H(4) & 0.320(5) & 0.334(8) & 0.214(7) & 3(1) \\ H(5) & -0.106(6) & -0.186(8) & 0.218(8) & 5(1) \\ H(6) & 0.037(6) & -0.206(9) & 0.249(9) & 6(1) \\ H(7) & 0.124(5) & 0.267(8) & 0.452(8) & 4(1) \\ H(8) & 0.116(6) & 0.447(9) & 0.377(8) & 5(1) \\ \hline {\it Complex 3} \\ Cu & 0 & 0 & 0 & 0 \\ C(1) & 0.2615(2) & -0.2522(2) & -0.0720(2) & 2.68(3) \\ O(2) & 0.2016(2) & 0.2376(2) & -0.0874(2) & 2.36(2) \\ O(3) & -0.1750(2) & -0.4004(2) & 0.8296(1) & 2.21(2) \\ O(4) & -0.4118(2) & -0.2472(2) & 0.6622(1) & 2.77(3) \\ N & 0.0601(2) & -0.1206(2) & 0.2331(1) & 1.52(2) \\ C(1) & 0.2608(2) & -0.1641(2) & 0.2500(2) & 1.83(3) \\ C(2) & 0.3127(2) & -0.2472(2) & 0.4067(2) & 1.95(3) \\ C(3) & 0.1570(2) & -0.2472(2) & 0.4067(2) & 1.95(3) \\ C(4) & -0.0922(2) & -0.1636(2) & 0.3737(2) & 1.49(2) \\ C(5) & -0.0499(2) & -0.2544(2) & 0.5516(2) & 1.77(2) \\ C(4) & -0.0922(2) & -0.1636(2) & 0.3737(2) & 1.49(2) \\ C(5) & -0.0499(2) & -0.2544(2) & 0.5516(2) & 1.63(2) \\ H(1) & 0.369(3) & -0.134(3) & 0.146(3) & 2.1(4) \\ \hline \end{array}$	C(3)	0.5010(4)	0.2059(6)	0.2956(5)	1.79(6)
$\begin{array}{ccccc} C(5) & 0.5387(3) & -0.0043(5) & 0.2662(4) & 1.34(6) \\ C(6) & 0.7033(4) & 0.0043(6) & 0.3714(5) & 1.88(6) \\ H(1) & 0.181(5) & -0.362(8) & -0.022(7) & 3(1) \\ H(2) & 0.437(5) & -0.360(7) & 0.115(7) & 3(1) \\ H(3) & 0.580(5) & 0.357(7) & 0.372(7) & 3(1) \\ H(4) & 0.320(5) & 0.334(8) & 0.214(7) & 3(1) \\ H(5) & -0.106(6) & -0.186(8) & 0.218(8) & 5(1) \\ H(6) & 0.037(6) & -0.206(9) & 0.249(9) & 6(1) \\ H(7) & 0.124(5) & 0.267(8) & 0.452(8) & 4(1) \\ H(8) & 0.116(6) & 0.447(9) & 0.377(8) & 5(1) \\ \hline {\it Complex 3} \\ Cu & 0 & 0 & 0 & 1.479(4) \\ O(1) & 0.2615(2) & -0.2522(2) & -0.0720(2) & 2.68(3) \\ O(2) & 0.2016(2) & 0.2376(2) & -0.0874(2) & 2.36(2) \\ O(3) & -0.1750(2) & -0.4004(2) & 0.8296(1) & 2.21(2) \\ O(4) & -0.4118(2) & -0.2472(2) & 0.6622(1) & 2.77(3) \\ N & 0.0601(2) & -0.1206(2) & 0.2331(1) & 1.52(2) \\ C(1) & 0.2608(2) & -0.1641(2) & 0.2500(2) & 1.83(3) \\ C(2) & 0.3127(2) & -0.2472(2) & 0.4067(2) & 1.95(3) \\ C(3) & 0.1570(2) & -0.2472(2) & 0.4067(2) & 1.95(3) \\ C(4) & -0.0922(2) & -0.1636(2) & 0.3737(2) & 1.49(2) \\ C(5) & -0.0499(2) & -0.2544(2) & 0.5352(2) & 1.42(2) \\ C(6) & -0.2268(2) & -0.3040(2) & 0.6876(2) & 1.63(2) \\ H(1) & 0.369(3) & -0.134(3) & 0.146(3) & 2.1(4) \\ \hline \end{array}$	C(4)	0.3488(4)	0.1935(5)	0.2051(5)	1.73(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)	0.5387(3)	-0.0043(5)	0.2662(4)	1.34(6)
$\begin{array}{cccccccc} H(1) & 0.181(5) & -0.362(8) & -0.022(7) & 3(1) \\ H(2) & 0.437(5) & -0.360(7) & 0.115(7) & 3(1) \\ H(3) & 0.580(5) & 0.357(7) & 0.372(7) & 3(1) \\ H(4) & 0.320(5) & 0.334(8) & 0.214(7) & 3(1) \\ H(4) & 0.320(5) & 0.334(8) & 0.214(7) & 3(1) \\ H(5) & -0.106(6) & -0.186(8) & 0.218(8) & 5(1) \\ H(6) & 0.037(6) & -0.206(9) & 0.249(9) & 6(1) \\ H(7) & 0.124(5) & 0.267(8) & 0.452(8) & 4(1) \\ H(8) & 0.116(6) & 0.447(9) & 0.377(8) & 5(1) \\ \hline {\mbox{Complex 3}} & & & & & \\ Cu & 0 & 0 & 0 & 0 & 1.479(4) \\ O(1) & 0.2615(2) & -0.2522(2) & -0.0720(2) & 2.68(3) \\ O(2) & 0.2016(2) & 0.2376(2) & -0.0874(2) & 2.36(2) \\ O(3) & -0.1750(2) & -0.4004(2) & 0.8296(1) & 2.21(2) \\ O(4) & -0.4118(2) & -0.2472(2) & 0.6622(1) & 2.77(3) \\ N & 0.0601(2) & -0.1206(2) & 0.2331(1) & 1.52(2) \\ C(1) & 0.2608(2) & -0.1641(2) & 0.2500(2) & 1.83(3) \\ C(2) & 0.3127(2) & -0.2472(2) & 0.4067(2) & 1.95(3) \\ C(3) & 0.1570(2) & -0.2948(2) & 0.5516(2) & 1.77(2) \\ C(4) & -0.0922(2) & -0.1636(2) & 0.3737(2) & 1.49(2) \\ C(5) & -0.0499(2) & -0.2544(2) & 0.5352(2) & 1.42(2) \\ C(6) & -0.2268(2) & -0.3040(2) & 0.6876(2) & 1.63(2) \\ H(1) & 0.369(3) & -0.134(3) & 0.146(3) & 2.1(4) \\ \end{array}$	C(6)	0.7033(4)	0.0043(6)	0.3714(5)	1.88(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(1)	0.181(5)	-0.362(8)	-0.022(7)	3(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(2)	0.437(5)	-0.360(7)	0.115(7)	3(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(3)	0.580(5)	0.357(7)	0.372(7)	3(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(4)	0.320(5)	0.334(8)	0.214(7)	3(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(5)	-0.106(6)	-0.186(8)	0.218(8)	5(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(6)	0.037(6)	-0.206(9)	0.249(9)	6(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H (7)	0.124(5)	0.267(8)	0.452(8)	4(1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(8)	0.116(6)	0.447(9)	0.377(8)	5(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Complex 3				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cu	0	0	0	1.479(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(1)	0.2615(2)	-0.2522(2)	-0.0720(2)	2.68(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(2)	0.2016(2)	0.2376(2)	-0.0874(2)	2.36(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(3)	-0.1750(2)	-0.4004(2)	0.8296(1)	2.21(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(4)	-0.4118(2)	-0.2472(2)	0.6622(1)	2.77(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N	0.0601(2)	-0.1206(2)	0.2331(1)	1.52(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)	0.2608(2)	-0.1641(2)	0.2500(2)	1.83(3)
$\begin{array}{ccccc} C(3) & 0.1570(2) & -0.2948(2) & 0.5516(2) & 1.77(2) \\ C(4) & -0.0922(2) & -0.1636(2) & 0.3737(2) & 1.49(2) \\ C(5) & -0.0499(2) & -0.2544(2) & 0.5352(2) & 1.42(2) \\ C(6) & -0.2268(2) & -0.3040(2) & 0.6876(2) & 1.63(2) \\ H(1) & 0.369(3) & -0.134(3) & 0.146(3) & 2.1(4) \end{array}$	C(2)	0.3127(2)	-0.2472(2)	0.4067(2)	1.95(3)
$\begin{array}{cccc} C(4) & -0.0922(2) & -0.1636(2) & 0.3737(2) & 1.49(2) \\ C(5) & -0.0499(2) & -0.2544(2) & 0.5352(2) & 1.42(2) \\ C(6) & -0.2268(2) & -0.3040(2) & 0.6876(2) & 1.63(2) \\ H(1) & 0.369(3) & -0.134(3) & 0.146(3) & 2.1(4) \end{array}$	C(3)	0.1570(2)	-0.2948(2)	0.5516(2)	1.77(2)
$\begin{array}{cccc} C(5) & -0.0499(2) & -0.2544(2) & 0.5352(2) & 1.42(2) \\ C(6) & -0.2268(2) & -0.3040(2) & 0.6876(2) & 1.63(2) \\ H(1) & 0.369(3) & -0.134(3) & 0.146(3) & 2.1(4) \end{array}$	C(4)	-0.0922(2)	-0.1636(2)	0.3737(2)	1.49(2)
$\begin{array}{cccc} C(6) & -0.2268(2) & -0.3040(2) & 0.6876(2) & 1.63(2) \\ H(1) & 0.369(3) & -0.134(3) & 0.146(3) & 2.1(4) \end{array}$	C(5)	-0.0499(2)	-0.2544(2)	0.5352(2)	1.42(2)
H(1) 0.369(3) -0.134(3) 0.146(3) 2.1(4)	C(6)	-0.2268(2)	-0.3040(2)	0.6876(2)	1.63(2)
	H(1)	0.369(3)	-0.134(3)	0.146(3)	2.1(4)

TABLE II Atomic parameters for 1, 2, 3, and 4^a

Atom	x/a	y/b	z/c	$B_{eq} \text{ or } B_{iso} (\text{\AA}^2)$
H(2)	0.455(3)	-0.273(3)	0.413(3)	2.9(4)
H(3)	0.179(3)	-0.353(3)	0.662(2)	2.8(4)
H(4)	-0.233(3)	-0.123(3)	0.359(3)	2.6(4)
H(5)	0.269(4)	-0.373(4)	0.005(3)	4.8(6)
H(6)	0.378(3)	-0.254(3)	-0.147(3)	4.2(6)
H(7)	0.111(4)	0.354(4)	-0.127(3)	4.3(6)
H(8)	0.207(4)	0.266(3)	-0.001(3)	4.2(6)
Complex 4				
Cu	0	0	0	1.804(8)
O(1)	0.0416(2)	-0.1531(3)	0.2042(3)	2.17(3)
O(2)	-0.0943(3)	0.2456(3)	0.2681(3)	3.29(5)
O(3)	0.7145(2)	0.9298(3)	0.4384(3)	2.99(4)
O(4)	0.7944(2)	0.6267(3)	0.2980(3)	3.06(4)
N	0.2190(2)	0.2322(3)	0.1246(3)	1.71(4)
C(1)	0.2486(3)	0.4667(4)	0.2014(4)	2.33(5)
C(2)	0.3980(3)	0.6256(4)	0.2762(4)	2.10(5)
C(3)	0.4943(3)	0.3038(4)	0.1968(4)	2.05(5)
C(4)	0.3422(3)	0.1543(4)	0.1282(4)	2.08(5)
C(5)	0.5248(3)	0.5463(4)	0.2719(3)	1.78(4)
C(6)	0.6917(3)	0.7133(4)	0.3424(4)	2.01(5)
H(1)	0.161(3)	0.521(4)	0.214(4)	2.7(6)
H(2)	0.419(4)	0.775(5)	0.339(4)	3.2(7)
H(3)	0.574(3)	0.244(4)	0.196(4)	2.1(6)
H(4)	0.319(4)	-0.013(5)	0.076(5)	3.4(7)
H(5)	0.117(4)	-0.049(6)	0.332(6)	5.2(9)
H(6)	-0.035(3)	-0.268(5)	0.225(5)	3.0(7)
H(7)	-0.120(4)	0.158(5)	0.353(6)	5(1)
H(8)	-0.120(5)	0.384(7)	0.296(7)	8(1)

TABLE II (Continued)

^a $B_{eq} = (8/3)\pi^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}aa^*bb^*\cos\gamma + 2U_{13}aa^*cc^*\cos\beta + 2U_{23}bb^*cc^*\cos\alpha)$. H atoms were refined isotropically.

FIGURE 1 ORTEP¹⁵ drawings of complexes 1 (a), 2 (b), 3 (c), and 4 (d). Non-H and H atoms are represented by thermal ellipsoids scaled at the 30% probability level and small circles with 0.1 Å radius, respectively.

unit cell. Selected interatomic distances and angles for 1, 2, 3, and 4 are listed together in Table III. Hydrogen bond distances and angles are given in Table IV.

Crystals of 1 are monoclinic, space group C2/m, isomorphous with the corresponding Zn(II) complex reported previously. The crystal structure is essentially the same as that reported by Anagnostopoulos *et al.*⁹: the coordination sphere is an octahedron, with four aqueous oxygens related by 2/m symmetry and two nicotinato nitrogens lying on the mirror plane. The Co-N bond (2.146(2)Å) agrees well with values reported for six-coordinated Co(II) complexes with pyridine ligands (2.004–2.172Å)¹⁶ and the Co-O(1) bond (2.114(2)Å) is within the usual range observed for Co(II) complexes with water molecules (2.059–2.123Å).¹⁶

The complex 2 crystallizes in the triclinic space group $P\bar{1}$, and is essentially isomorphous with that of the corresponding Zn(II) complex with nic. Coordination around the Co(II) atom forms a slightly distorted octahedral geometry with two aqueous oxygens and two isonicotinato nitrogens in the equatorial positions and two aqueous oxygens in the axial positions. The Co-O(2) bond (2.132 Å) is slightly longer than those of Co(II) complexes with water molecules reported previously (2.059–2.123 Å),¹⁶ although another Co-O(1) bond (2.081(2) Å) lies within the range of usual values. The Co-N bond (2.150(3) Å) is also within the range of usual values (2.004–2.172 Å).¹⁶ Although the substituent effect of the carboxyl group on the pyridine ring was expected to be reflected in the Co-N bonds between complexes 1 and 2, no apparent difference was observed.

The complex 3 crystallizes in the triclinic space group $P\overline{1}$, different from the corresponding Zn(II) and Co(II) complexes. The coordination around the Cu(II) atom shows an axially-elongated octahedral geometry with Jahn-Teller distortion, with two aqueous oxygens and two nicotinato nitrogens in equatorial positions and two aqueous oxygens in axial positions. The axial Cu-O(2) bond (2.442(1) Å) lies in the range (2.275–2.520 Å)¹⁶ reported previously for Cu(II) complexes with Jahn-Teller distortion and the equatorial Cu-O(1) bond (1.995(1) Å) is slightly longer than those in the six-coordinated Cu(II) complexes with water molecules (1.950–1.973 Å).¹⁶ The Cu-N (2.005(1) Å) bond is shorter than those reported for six-coordinated Cu(II) complexes with pyridine ligands (2.039–2.055 Å).¹⁶

Crystals of 4 are also triclinic, space group $P\overline{1}$. The molecular structure shows an extreme Jahn-Teller distortion around the Cu(II) atom in comparison with that in complex 3. The axial Cu-O(2) bond (2.452(2)Å) is longer than that of complex 3 (2.442(1)Å) and the equatorial Cu-O(1) bond (1.984(2)Å) is shorter than that of 3 (1.995(1)Å), although the Cu-N bond

4 a	
pui	l
Э	
ų	
Ĺ,	I
complexes	
the	
for	I
с.)	I
angles	
and	
, Y	l
distances	
eratomic	
III Int	
TABLE	

Complex 1							
$C_0 - O(1)$	2.114(2)	Co-N	2.146(2)	N-C(1)	1.349(5)	N-C(4)	1.337(5)
C(1)-C(2)	1.389(4)	C(2)-C(3)	1.382(6)	C(4)-C(5)	1.388(3)	$C(5) - \tilde{C}(3)$	1.396(5)
C(5)-C(6)	1.501(5)	C(6) - O(2)	1.260(3)	C(6)-O(3)	1.262(5)	C(1)-H(1)	0.98(5)
C(2)H(2)	0.94(5)	C(3)-H(3)	0.94(4)	C(4)-H(4)	0.93(5)	O(1)-H(5)	0.94(3)
O(1)-H(6)	0.85(4)						n. r
O(1)-Co-O'(1)	180	O(1)-Co-O"(1)	89.77(8)	$O(1)-C_0-O''(1)$	90.23(8)	$O(1)-C_0-N$	90.98(7)
O(1)-Co-N'	89.02(7)	O'(1)-Co-O''(1)	90.23(8)	$O'(1) - C_0 - O'''(1)$	89.77(8)	O'(1)-Co-N	89.02(7)
O'(1)-Co-N'	90.98(7)	$O'(1)-C_{0}-O'''(1)$	180	$O''(1) - C_0 - N$	89.02(7)	$O''(1)-C_0-N'$	90.98(7)
O "(1)-Co-N	90.98(7)	$O'''(1) - C_0 - N'$	89.02(7)	N-Co-N	180	$C_0 - O(1) - H(5)$	124(2)
Co-O(1)-H(6)	113(3)	H(5)-O(1)-H(6)	109(3)	Co-N-C(4)	120.8(2)	$C_0-N-C(1)$	121.8(2)
C(1)-N-C(4)	117.4(2)	N-C(1)-C(2)	123.0(4)	N-C(1)-H(1)	116(2)	C(2)-C(1)-H(1)	121(2)
C(3)-C(2)-C(1)	119.1(4)	C(3)-C(2)-H(2)	123(3)	C(1)-C(2)-H(2)	118(3)	C(5)-C(3)-C(2)	118.6(3)
C(5)-C(3)-H(3)	121(4)	C(2)-C(3)-H(3)	120(4)	N-C(4)-C(5)	123.5(3)	N-C(4)-H(4)	119(3)
C(5)-C(4)-H(4)	118(3)	C(4) - C(5) - C(3)	118.6(3)	C(4) - C(5) - C(6)	119.5(3)	C(3) - C(5) - C(6)	122.0(2)
O(2)-C(6)-O(3)	125.4(4)	O(2)-C(6)-C(5)	118.5(3)	O(3) - C(6) - C(5)	116.1(2)		× ,
Complex 2							
Co-0(1)	2.081(3)	Co-0(2)	2.132(2)	Co-N	2.150(3)	N-C(1)	1.346(5)
N-C(4)	1.350(4)	C(1)-C(2)	1.370(5)	C(2)-C(5)	1.391(4)	$C(5) - \dot{C}(3)$	1.387(5)
C(3)-C(4)	1.374(5)	C(5) - C(6)	1.497(4)	C(6) - O(3)	1.263(5)	C(6) - O(4)	1.252(3)
C(1) - H(1)	0.97(4)	C(2) - H(2)	0.89(5)	C(3) - H(3)	0.96(4)	C(4) - H(4)	$0.95(\hat{5})$
0(1)-H(5)	0.88(6)	O(1)-H(6)	0.81(6)	O(2) - H(7)	0.88(6)	O(2)-H(8)	0.82(5)
0(1)-Co-0'(1)	180	O(1)-Co-O(2)	86.7(1)	O(1)-Co-O'(2)	93.3(1)	O(1)-Co-N	91.5(1)
$O(1)-C_0-N'$	88.5(1)	O'(1)-Co-O(2)	93.3(1)	O'(1)-Co-O'(2)	86.7(1)	O'(1)-Co-N	88.5(1)
O'(1)-Co-N'	91.5(1)	O(2)-Co-O'(2)	180	O(2)-Co-N	88.3(1)	O(2)-Co-N'	91.7(1)
O'(2)-Co-N	91.7(1)	O'(2)Co-N'	88.3(1)	N-Co-N'	180	C0-O(1)-H(5)	118(4)
Co-O(1)-H(6)	112(5)	H(5)-O(1)-H(6)	107(6)	Co-O(2)-H(7)	111(3)	Co-O(2)-H(8)	128(4)
H(7)-O(2)-H(8)	114(4)	Co-N-C(1)	123.8(2)	Co-N-C(4)	119.1(2)	C(1)-N-C(4)	117.0(3)
N-C(1)-C(2)	122.9(3)	N-C(1)-H(1)	114(3)	C(2)-C(1)-H(1)	123(3)	C(1)-C(2)-C(5)	119.9(3)
C(1)-C(2)-H(2)	119(3)	C(5)-C(2)-H(2)	121(3)	C(4)-C(3)-C(5)	119.3(3)	C(4)-C(3)-H(3)	120(3)
C(5)-C(3)-H(3)	120(3)	N-C(4)-C(3)	123.2(3)	N-C(4)-H(4)	116(2)	C(3)-C(4)-H(4)	121(3)
C(2) - C(5) - C(3)	117.5(3)	C(2) - C(5) - C(6)	121.8(3)	C(3)-C(5)-C(6)	120.6(2)	O(3)-C(6)-O(4)	124.6(3)
	(7)11011		(()7)11				

Downloaded At: 15:19 23 January 2011

Complex 3							
Cu-O(1)	1.995(1)	Cu-O(2)	2.442(1)	Cu-N	2.005(1)	N-C(1)	1.349(2)
N-C(4)	1.342(1)	C(1)-C(2)	1.380(2)	C(2)-C(3)	1.385(2)	$C(3) - \tilde{C}(5)$	1.397(2)
C(4)-C(5)	1.389(2)	C(5)-C(6)	1.510(2)	C(1) - H(1)	0.97(2)	C(2) - H(2)	0.95(2)
C(3)-H(3)	0.93(2)	C(4)-H(4)	0.94(2)	C(6) - O(3)	1.264(2)	C(6) - O(4)	1.249(2)
O(1)-H(5)	0.87(2)	O(1)-H(6)	0.84(2)	O(2) - H(7)	0.82(2)	O(2) - H(8)	0.86(3)
O(1)-Cu-O'(1)	180	O(1)-Cu-O(2)	95.48(5)	O(1)-Cu-O'(2)	84.52(5)	0(1)-Cu-N	88.73(5)
O(1)-Cu-N'	91.27(5)	O'(1)-Cu-O(2)	84.52(5)	O'(1)-Cu-O'(2)	95.48(5)	O'(1)-Cu-N	91.27(5)
O'(1)-Cu-N'	88.73(5)	O(2)-Cu-O'(2)	180	O(2)-Cu-N	92.14(5)	O(2) - Cu - N'	87.86(5)
0'(2)-Cu-N	87.86(5)	O'(2)-Cu-N'	92.14(5)	N-Cu-N'	180	Cu = O(1) - H(5)	112(1)
Cu-O(1)-H(6)	129(2)	H(5)-O(1)-H(6)	116(2)	Cu-O(2)-H(7)	101(2)	Cu - O(2) - H(8)	112(2)
H(7)-O(2)-H(8)	101(3)	Cu-N-C(1)	119.4(1)	Cu-N-C(4)	122.1(1)	C(1)-N-C(4)	118.6(1)
N-C(1)-C(2)	122.2(1)	N - C(1) - H(1)	117(1)	C(2)-C(1)-H(1)	121(1)	C(1)-C(2)-C(3)	119.3(1)
C(1)-C(2)-H(2)	(1)611	C(3)-C(2)-H(2)	121(1)	C(2) - C(3) - C(5)	118.9(1)	C(2)-C(3)-H(3)	125(1)
C(5)-C(3)-H(3)	116(1)	N-C(4)-C(5)	122.6(1)	N-C(4)-H(4)	117(1)	C(5)-C(4)-H(4)	121(1)
C(3)-C(5)-C(4)	118.4(1)	C(3) - C(5) - C(6)	121.7(1)	C(4) - C(5) - C(6)	119.9(1)	O(3)-C(6)-O(4)	125.5(1)
O(3)-C(6)-C(5)	(17.3(1)	O(4) - C(6) - C(5)	117.1(1)			~	
Complex 4							
Cu-0(1)	1.984(2)	Cu-O(2)	2.452(2)	Cu-N	2.010(2)	N-C(1)	1.345(3)
N-C(4)	1.346(4)	C(1) - C(2)	1.371(3)	C(3)-C(4)	1.371(3)	$C(2)-\dot{C}(5)$	1.385(4)
C(3) - C(5)	1.391(3)	C(5)-C(6)	1.512(3)	C(I)-H(I)	0.96(3)	C(2) - H(2)	0.86(3)
C(3) - H(3)	0.91(3)	C(4) - H(4)	0.95(3)	C(6) - O(3)	1.265(3)	C(6) - O(4)	1.242(4)
O(1)-H(5)	0.94(3)	O(1) - H(6)	0.94(3)	O(2) - H(7)	0.94(4)	O(2)-H(8)	0.94(5)
O(1)-Cu-O'(1)	180	O(1)-Cu-O(2)	85.97(8)	O(1) - Cu - O'(2)	94.03(8)	O(1)-Cu-N	89.85(8)
O(1)-Cu-N'	90.15(8)	O'(1)-Cu-O(2)	94.03(8)	O'(1)-Cu-O'(2)	85.97(8)	O'(I)-Cu-N	90.15(8)
O'(1)-Cu-N'	89.96(9)	O(2)-Cu-O'(2)	180	O(2)-Cu-N	91.24(7)	0(2)Cu-N'	88.76(7)
O'(2)-Cu-N	88.76(7)	O'(2)-Cu-N'	91.24(7)	N-Cu-N'	180	Cu - O(1) - H(5)	113(3)
Cu-O(1)-H(6)	124(2)	H(5)-O(1)-H(6)	112(3)	Cu - O(2) - H(7)	104(2)	Cu-O(2)-H(8)	138(3)
H(7)-O(2)-H(8)	117(4)	Cu-N-C(1)	122.3(2)	Cu-N-C(4)	119.9(1)	C(1)~N-C(4)	117.9(2)
N-C(1)-C(2)	122.4(3)	N-C(1)-H(1)	118(2)	C(2)-C(1)-H(1)	120(1)	C(1)-C(2)-C(5)	120.0(2)
C(5)-C(2)-H(2)	116(2)	C(1)-C(2)-H(2)	123(2)	C(4)-C(3)-C(5)	119.5(3)	C(4)-C(3)-H(3)	110(1)
C(5)-C(3)-H(3)	121(1)	N-C(4)-C(3)	122.6(2)	N-C(4)-H(4)	117(2)	C(3)-C(4)-H(4)	121(2)
C(2)-C(5)-C(3)	117.6(2)	C(3)-C(5)-C(6)	120.1(2)	C(2)-C(5)-C(6)	122.3(2)	O(3)-C(6)-O(4)	125.5(2)
O(3)-C(6)-C(5)	117.2(3)	O(4)-C(6)-C(5)	117.3(2)				

^a Estimated standard deviations are given in parentheses. Symmetry transformations used to generate equivalent atoms: $(') - x_i - y_i - z_i ('') - x_i$, $y_i - z_i ('') = x_i - y_i - z_i$.

	Hydrogen bond X · · · · · H-O	$\begin{array}{c} Distance\\ \mathbf{X}\cdot\cdots\cdot\mathbf{O}\end{array}$	Angle X · · · · · H-O
Complex 1	$O(2)^{a} \cdots H(5) - O(1)$ $O(3)^{b} \cdots H(6) - O(1)$	2.699 2.690	168 162
Complex 2	$\begin{array}{l} O(3)^{c} \cdots H(5) - O(1) \\ O(4)^{d} \cdots H(6) - O(1) \\ O(3)^{d} \cdots H(7) - O(2) \\ O(4)^{c} \cdots H(8) - O(2) \end{array}$	2.773 2.641 2.858 2.781	169 172 164 177
Complex 3	$\begin{array}{l} O(3)^{f} \cdots H(5) - O(1) \\ O(4)^{g} \cdots H(6) - O(1) \\ O(3)^{h} \cdots H(7) - O(2) \\ O(3)^{i} \cdots H(8) - O(2) \end{array}$	2.750 2.597 2.817 2.806	159 167 163 166
Complex 4	$\begin{array}{l} O(3)^{e} \cdots H(5) - O(1) \\ O(4)^{j} \cdots H(6) - O(1) \\ O(3)^{j} \cdots H(7) - O(2) \\ O(4)^{e} \cdots H(8) - O(2) \end{array}$	2.726 2.627 2.959 2.822	160 154 151 168

TABLE IV Hydrogen bond distances (Å) and angles (°)

Equivalent positions: ${}^{a}1/2 - x$, 1/2 - y, 1 - z; ${}^{b}x$, y, -1 + z; ${}^{c}-1 + x$, y, z; ${}^{d}1 - x$, -y, 1 - z; ${}^{o}1 - x$, 1 - y, 1 - z; ${}^{f}-x$, -1 - y, 1 - z; ${}^{b}1 + x$, y, -1 + z; ${}^{i}-x$, -y, 1 - z; ${}^{i}-1 + x$, -1 + y, z.

(2.010(2) Å) is almost the same (2.005(1) Å). Interestingly, the apparent discrepancy was not detected between Cu–N bonds in 3 and 4.

As described above, the crystal structures of the nicotinato and isonicotinato complexes of Co(II) and the isonicotinato complex of Cu(II) are isomorphous with the corresponding Zn(II) complexes, although differences in the degree of distortion around the octahedral units appear. The nicotinato and isonicotinato complexes, therefore, form similar intermolecular hydrogen bonds between the coordinating water molecules and carboxyl oxygens of adjacent molecules, as listed in Table IV. Such hydrogen bond networks may contribute to the stabilities of the crystal structures.

Supplementary Material

Tables of calculated and observed structure factors and lists of anisotropic thermal parameters are available on request.

Acknowledgments

The authors would like to thank the Supercomputer Laboratory, Institute for Chemical Research, Kyoto University and Cray Research Japan Ltd. for providing computation time and a highly developed computational environment, and Dr. Y. Funahashi, Nagoya University, for the elemental analyses.

References

- A. Takenaka, H. Utsumi, N. Ishihara, A. Furusaki and I. Nitta, Nippon Kagaku Zasshi, 91, 921 (1970).
- [2] P. Lumme, G. Lundgren and W. Mark, Acta Chem. Scand., 23, 3011 (1969).
- [3] W.E. Broderick, M.R. Pressprich, U. Geiser, R.D. Willett and J.I. Legg, Inorg. Chem., 25, 3372 (1986).
- [4] F.A. Cotton, L.R. Falvello, E.L. Ohlhausen, C.A. Murillo and J.F. Quesada, Z. anorg. allg. Chem., 598/599, 52 (1991).
- [5] M.B. Cingi, P. Domiano, C. Guastini, A. Musatti and M. Nardelli, Gazz. Chim. Ital., 101, 455 (1971).
- [6] V.Kh. Sabirov, A.S. Batsanov, Yu.T. Struchkov and G.G. Aleksandrov, Koord. Khim., 10, 1113 (1984).
- [7] M.B. Cingi, A.G. Manfredotti, C. Guastini, A. Musatti and M. Nardelli, Gazz. Chim. Ital., 101, 815 (1971).
- [8] S.C. Chang, J.K.H. Ma, J.T. Wang and N.C. Li, J. Coord. Chem., 2, 31 (1972).
- [9] A. Anagnostopoulos, M.G.B. Drew and R.A. Walton, Chem. Comm., 1241 (1969).
- [10] A. Anagnostopoulos, R.W. Matthews and R.A. Walton, Can. J. Chem., 50, 1307 (1972).
- [11] A. Takenaka, H. Utsumi, T. Yamamoto, A. Furusaki and I. Nitta, Nippon Kagaku Zasshi, 91, 928 (1970).
- [12] N. Walker and D. Stuart, Acta Cryst., A39, 158 (1983).
- [13] International Tables for X-ray Crystallography, Vol. IV, (Kynoch Press, Birmingham, UK, 1974).
- [14] MolEN, An Interactive Structure Solution Procedure, (Enraf-Nonius, Delft, The Netherlands, 1990).
- [15] C.K. Johnson, ORTEP, Rep. ORNL-3794, Oak Ridge National Laboratory, Oak Ridge. Tennessee.
- [16] A.G. Orpen, L. Brammer, F.H. Allen, O. Kennard, D.G. Watson and R. Taylor, J. Chem. Soc., Dalton Trans., S1 (1989).